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Exact closed nonlinear transport equations for a set of macroscopic variables a 
are derived from classical statistical mechanics. The derivation involves only 
simple manipulations of the Liouville equation, and makes no use of projection 
operators or graphical expansions. It is based on the Chapman Enskog idea of 
separating the distribution function into a constrained equilibrium part, 
obtained from information theory, and a small remainder. The resulting exact 
transport equations involve time convolutions over the past history of both a(t) 
and ~i(t). However, if the variables a provide a complete macroscopic descrip- 
tion, the equations may be simplified. This is accomplished by a systematic 
expansion procedure of Chapman Enskog type, in which the small parameter is 
the natural parameter of slowness relevant to the problem. When carried out to 
second order, this expansion leads to approximate nonlinear transport 
equations that are local in time. These equations are valid far from equilibrium. 
They contain nonlinear (i.e., state-dependent) transport coefficients given by 
integrals of time correlation functions in the constrained equilibrium ensemble. 
Earlier results are recovered when the equations are linearized about 
equilibrium. As an illustrative application of the formalism, an expression is 
derived for the nonlinear (i.e., velocity-dependent) friction coefficient for a heavy 
particle in a bath of light particles. 

KEY WORDS:  Nonlinear transport equations; nonlinear evolution 
equations; transport far from equilibrium; transport coefficients; information 
theory; Chapman-Enskog theQry; closure. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  

A primary objective of nonequilibrium statistical mechanics is the 
derivation from microscopic first principles of macroscopic transport 
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equations; i.e., closed equations of motion for reduced sets of macroscopic 
variables. In general such equations are both nonlinear and irreversible 
(e.g., the Navier-Stokes equations of hydrodynamics). In much of the early 
work, attention was focused on the irreversible aspects within the simplified 
context of linearized transport equations. This work was largely concerned 
with deriving microscopic expressions for the linear transport coefficients. ILl 
In recent years the emphasis has shifted toward nonlinear descriptions of 
irreversible processes in systems far from equilibrium. This work has been 
pursued by a variety of different methods. 12 4) 

A class of methods that is especially well suited to the derivation of 
closed deterministic transport equations is that based on the application of 
Chapman Enskog ideas (5t to the Liouville equation. 16 ~0t In these methods 
the full distribution function is typically represented as the sum of a con- 
strained or local equilibrium part and a presumably small remainder. (For 
general use we prefer "constrained" to "local," as the latter is strictly 
appropriate only for spatially dependent macroscopic variables.) Perhaps 
the most elegant version of this approach is that of Robertson, Is) who 
obtains exact closed equations of motion with a very appealing structure. 

Robertson's theory makes use of time-dependent projection operators, 
which have both advantages ~s~ and disadvantages./9t The projection 
operators confer certain desirable properties upon the correlation functions 
that arise. (8~ The price paid is that the correlation functions do not directly 
reflect the true microscopic dynamics, but rather evolve according to an 
artificial "projected" dynamics. 

Here we pursue an analogous development that uses no projection 
operators. Attention is restricted to the classical case for simplicity; the 
corresponding quantum development is straightforward. (s~ Like Robertson, 
we use information theory to define the constrained equilibrium dis- 
tribution, and we take the initial distribution function to be the constrained 
equilibrium distribution consistent with the initial values of the 
macroscopic variables. Simple manipulations of the Liouville equation then 
lead, in a remarkably straightforward way, to exact nonlinear transport 
equations for the macroscopic variables a. Many of the earlier theories in 
the Chapman Enskog spirit (61 are essentially based on a naive low-order 
iterative approximation to these exact equations. 

The resulting exact transport equations, like those of Robertson, are 
nonlocal in time; they involve convolutions over the past history of the 
system. But while Robertson's equations involve only past values of a(t), 
the present equations contain an additional convolution over past values of 
~i(t) as well. This is a direct consequence of omitting the projection 
operator. Thus, the present equations are not merely integrodifferential in 
nature, but are also implicit in ~i(t), whereas Robertson's equations give 
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a(t) explicitly in terms of the past history of a(t). This implicitness may 
appear to be a significant complication, but in practice it presents no real 
problems. The reason is that the exact transport equations are not nor- 
mally solved in any case; they are primarily of interest as a structure upon 
which to impose approximations. As will be seen, the present equations are 
well suited for this purpose. 

If the variables a provide a complete macroscopic description, which is 
our hope and intent, then the exact transport equations must reduce to 
equations that are essentially local in time. They can then be solved as an 
initial-value problem, which is just what we require of a macroscopic state 
description. Physically, this reduction to time-local behavior is a con- 
sequence of a wide separation between the fast microscopic time scales and 
the slow time scales over which the variables a change appreciably. What is 
needed is a way to express this presumed separation of time scales as a 
well-defined mathematical approximation in which the exact transport 
equations reduce to a time-local form. 

Robertson's formulation has the advantage that the reduction to time- 
local equations is very easy to perform. One simply assumes that a certain 
kernel decays essentially to zero on a microscopic time scale, so that it may 
be macroscopically approximated as a delta function. However, the 
resulting transport coefficients still involve the projected dynamics, and if it 
is desired to relate them to the true microscopic dynamics, an additional 
conversion is required.~l~ i ) 

In the present formulation the reduction to time-local equations is not 
quite so straightforward, as it occurs through an interplay between two 
convolution kernels, neither of which becomes nearly local by itself. 
Nevertheless, the reduction is readily accomplished by means of a 
systematic expansion procedure of Chapman Enskog type, ~5'7t in which the 
small parameter is the natural parameter of slowness C12~ (call it ~) relevant 
to the problem. The limit ~ ~ 0 corresponds to an infinite separation of 
time scales; i.e., a macroscopic time scale infinitely slower than the 
microscopic one. 

It is necessary to carry the expansion to second order to obtain 
irreversibility, as the first-order equations are purely reversible in nature. 
When this is done, the two nonlocal kernels combine in the term of order 
~2 to produce a correlation function containing a "subtracted flux. ''~81 The 
transport equations then become local in time under the assumption that 
this correlation function decays essentially to zero on a microscopic time 
scale, so that it may be approximated as a delta function. (Of course, this 
presupposes that any long-time tails are integrable and small in amplitude; 
otherwise, a time-local representation of the irreversible terms does not 
strictly exist.) We thereby obtain nonlinear irreversible transport equations, 
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local in time and valid to order ~2, in which the transport coefficients are 
given in terms of time correlation functions involving the true microscopic 
dynamics in the constrained equilibrium ensemble. When these results are 
linearized about equilibrium, they reduce to results obtained in earlier 
analyses of linear transport. (12) 

In summary, our development combines the following basic 
ingredients: (1)a Chapman-Enskog separation of the distribution function 
into a constrained equilibrium distribution and a remainder, (6 10~ (2)the 
use of information theory (13) to define the constrained equilibrium 
distribution, (s) and (3) a systematic expansion of Chapman-Enskog type (71 
in the appropriate parameter of slowness. (~2) The earlier work to which we 
are closest in spirit is that of Robertson, (s) Zwanzig, (12) Dufty, (vt 
Wong et  al., (14) and Dufty and Lindenfeld. (~5t Our formulation is perhaps 
best thought of as a variation on Robertson's theory, in which the projec- 
tion operator is avoided by exploiting the presence in the problem of the 
small parameter 3. 

2. P R E L I M I N A R I E S  

The microscopic state or phase of the system is denoted by X, which 
represents the set of all canonical coordinates and momenta of the con- 
stituent particles. A set of macroscopic variables a =  (at, a2,... ) has 
somehow been identified which is believed or hoped to provide a complete 
description of the macroscopic state of the system. The corresponding 
microscopic dynamical variables are denoted by A(X)= (A ~(X), A 2(X),...). 

The time-dependent distribution function in phase space is denoted by 
p(X, t). It satisfies the Liouville equation 

Op/Ot = - L p  (1) 

where L is the Liouville operator; i.e., the Poisson bracket of the operand 
with the Hamiltonian. This equation determines p(X, t) in terms of its 
initial value p(X, 0). The macroscopic variables a(t) at time t are then given 
by 

a(t) = f dX p(X, t) A(X) (2) 

The dynamical variable corresponding to the time derivative a(t) is 
A(X) = LA(X), so that 

/~(t) = f dX p(X, t)/k(X) (3) 
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Our next task is to define the constrained equilibrium distribution, 
which is intended to be an approximation to the true distribution that 
reproduces the same values of a. It is natural to base this definition on 
information theory, which provides a distribution containing minimal 
additional information beyond the specified values of a. This distribution is 
of the generalized canonical form (s'13) 

po(X; a ) =  Q ~(a) exp{7(a)" A(X)} (4) 

where 

Q(a) = f dX exp{7(a ) �9 A(X)} (5) 

and the Lagrange multipliers ~/(a) are functions of a implicitly determined 
by the requirement that 

f dX po(X; a) A(X) = a (6) 

If Q is alternatively regarded as a function of ?, one readily verifies that 

0 
a = ~ - l n  Q(7) (7) 

u7 

This determines a functional relation a(7), which may in principle be inver- 
ted to obtain 7(a). The deviations of the parameters 3' from their 
equilibrium values play the role of thermodynamic driving forces in the 
macroscopic dynamics. (8~ 

Averages weighted by po(X; a) will be denoted by angular brackets; 
i.e., (F(X))=~dXpo(X;a)F(X). It must be remembered that such 
averages depend parametrically upon a, as this is not explicitly indicated by 
the bracket notation. When it is necessary to specify the time at which a is 
evaluated, a subscript will be affixed; e.g., (F (X) ) ,  = ~ dX po(X; a(t))F(X). 
We emphasize that the angular brackets always denote a constrained 
equilibrium average and never refer to an average weighted by the full dis- 
tribution function p(X, t). Averages of the latter type will always be written 
out explicitly, as in Eqs. (2) and (3). 

The constrained equilibrium approximation to ~i is just ~i ~ v(a), where 

v(a) = f dX po(X; a) A(X) = (A(X) > (s 

is the canonical streaming velocity. It does not involve the microscopic 
dynamics, so its evaluation is simply a problem in equilibrium statistical 
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mechanics. In this approximation the macroscopic dynamics is purely 
reversible. (al 

Standard Liouville operator manipulations (~~ enable us to rewrite 
v(a) as 

v(a)  -- - <A~i, > .  7 (a )  (9) 

In a similar way, one readily verifies that 

v(a) �9 7(a) = 0 (10) 

Equation (9) can therefore be written in the alternative form 

v(a) = - <6AA >. 7(a) (11 ) 

where ~A(X)= A ( X ) -  a. This form will be useful later. 
The entropy of the macroscopic state a is given by (s~ 

S(a )=  -kBfdXpo(X;a)lnpo(X;a)=kB[lnQ(a)-a.7(a)] (12) 

where kB is Boltzmann's constant. It follows that 

0S(a)/c~a = - k  B 7(a) ( 13 ) 

which shows that "/is thermodynamically conjugate to a. It further follows 
that 

S(a)  = -knT(a  ) �9 a (14) 

The reversibility of v(a) may be inferred directly from Eqs. (10) and (14), 
which show that v(a) makes no contribution to the production of entropy. 

3. E X A C T  N O N L I N E A R  T R A N S P O R T  E Q U A T I O N S  

We begin the derivation by writing 

p(X, t) = po(X; a(t)) + @(X, t) 

which defines 6p. Equation (3) then becomes 

fi(t) = v(a(t)) + f dX 6p(X, t) A(X) 

in which all irreversible effects reside in the term involving @. 

(15) 

(16) 
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To determine 6p, we combine Eqs. (1) and (15) to obtain 

(~t + L)6p(X,  f )=  - ( ~ t + L ) p o ( X ;  a(t)) (17) 

This equation may be solved by standard methods, with the result 

cSp(X,t)=e ~L'IcSp(X,O)-f~dreL~(~-~r+L)po(X;a(z)) 1 (18) 

We now make the usual assumption (8 ~o) that the initial distribution is 
just the constrained equilibrium distribution consistent with the initial 
values of a, so that 6p(X, 0) vanishes. This assumption has sometimes been 
a cause for concern, but it is quite easy to justify from the standpoint of 
information theory. If our knowledge of the initial conditions is in fact 
limited to the initial values of a, then an initial constrained equilibrium dis- 
tribution is the least biased or maximally noncommital probability dis- 
tribution consistent with that knowledge. (~3~ Moreover, if the variables a 
do in fact constitute a complete macroscopic description, then their initial 
values are all that is needed to predict their later values. This in turn 
implies that the initial constrained equilibrium distribution contains all the 
information necessary to make such predictions,/~3~ and hence to derive the 
macroscopic equations of motion. 

With the above choice of the initial distribution, Eq. (18) reduces to 

@(X,t)=--i'dreL" "(8 ) , 8---~ + L po(X; a(z)) (19) 

The next step is to carry out the indicated operations in the integrand. We 
readily find that 

8 8tPo(X;a(t))=po(X;a(t))[A(X)-a(t)].M(a(t))'i~(t) (20) 

where 

M ( a )  = 8"l(a)/Oa -- (6A 6A) - -1  (21) 

and 
Lpo(X; a) = po(X; a) y(a)- A(X) (22) 

Combining Eqs. (19)-(22) and substituting the resulting expression for tip 
into Eq. (16), we finally obtain 

;o fi(t)=v(a(t))--  dr [K( t , r ) -7 (a (z ) )+L( t , r ) . f i (z ) ]  (23) 
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where 

K(t, r )=  <[e Lr ~t~,(X)] A(X)>~ (24) 

k(t, ~)= ( [e  L(' ~)A(X)] 6A(X))~- M(a(r)) (25) 

and use has been made of the fact that e L' is an orthogonal operator. 
The exact nonlinear transport equations are given by Eq. (23). They 

are integrodifferential equations which relate a(r) and a(z) over the time 
interval 0 ~< r ~ t. The correlation functions in the kernels K and k are 
evaluated in the constrained equilibrium ensemble. Thus, they depend 
parametrically on a, which is to be evaluated as a(r) as indicated. Their 
time dependence is generated by the true microscopic dynamics via the 
time-development operator e ct. Equations (23)-(25) are the foundation 
upon which the remainder of our development is based. Similar equations 
have been derived by Wong et al. (141 and Dufty and Lindenfeld 115) for the 
case in which the variables A are continuous field variables representing 
densities of conserved quantities. 

Constrained-equilibrium time correlation functions of the type in Eqs. 
(24) and (25) must be handled with care, as some of the familiar rules for 
manipulating equilibrium time correlation functions no longer apply. In 
particular, the constrained equilibrium state is not stationary (i.e., Lpo # 0), 
so the time origin cannot be shifted at will. The correlation functions 
therefore depend separately on t and ~, and not merely on t - r .  Since the 
time origin is no longer arbitrary, it is no longer appropriate to think of 
F(X) as F ( t=0)  and eL'F(X) as F(t)  in the usual way. A little thought 
shows that the time to be associated with F(X) is the time at which the 
associated distribution over X is evaluated. Thus, in Eqs. (24) and (25) we 
may think of A(X) and 6A(X) as A(r) and 6A(z), respectively. Now the 
operator e c' still shifts the time by t, in the sense that eC'F(X) is the value 
of F at time t + r in a system whose phase point was X at time r. Thus, if 
F(X) is thought of as F(r), then eL'F(X) is to be thought of as F ( t + r ) .  
Equations (24) and (25) may therefore be rewritten in the more compact 
forms 

K(t, r)= (A(t) A(~)), (26) 

k(t, ~)= (A(t) 6A(~))~" M(a(~)) (27) 

which also makes the significance of the correlation functions clearer. 
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4. R E D U C T I O N  TO T I M E - L O C A L  E Q U A T I O N S  

The exact transport equations of the previous section are primarily of 
interest as a starting point for approximations. As discussed in Section 1, 
we wish to formulate a proper mathematical approximation corresponding 
to the physical separation of time scales that gives rise to time-local 
macroscopic behavior. 

The structure of Eq. (23) suggests that successive approximations to 
~i(t) be generated simply by iteration, using v(a) as a first approximation. 
[The same sequence of approximations is generated by a naive Chap- 
man-Enskog expansion of ~i(t) in powers of a "small" parameter 
introduced into Eq. (23) as a factor in front of the integraL] The second 
approximation to ~i(t) would then be given by Eq. (23) with ~i(r) replaced 
by v(a(r)) in the right member. It is just this approximation (or the 
linearization thereof) upon which the older transport theories of 
Chapman-Enskog type were based. (6) 

Unfortunately, this simple and intuitive approximation procedure is 
now known to be unsatisfactory. The problem is that the macroscopic and 
microscopic dynamics are not treated consistently at each level of 
approximation, and as a result the reduction to time-local behavior does 
not properly occur. (71 The need for consistency arises from the fact that the 
time correlation functions contain slowly varying parts corresponding to 
the slow variation of the variables a(t).  (7'12) Any approximation to the 
macroscopic equations governing a(t) must therefore be accompanied by a 
self-consistent approximation in the slowly varying parts of the correlation 
functions. 

The required consistency may be obtained by performing a more 
systematic expansion of Chapman Enskog type in the natural parameter of 
slowness ~1~) ~ relevant to the problem. The existence of such a parameter is 
the usual reason for the separation of time scales and the slow variation of 
a(t). Typically A ~  for small ~,(10) so that ~(t) is small and a(t) varies 
slowly. 

The physical significance of ~ will be different in different contexts, t~2) 
depending upon the physical origin of the separation of time scales. The 
most common origins are microscopic conservation laws and continuous 
broken symmetries. (11t Slow behavior can also result from large inertia or 
weak coupling. (12) Even when the physical origin of the slowness is 
apparent, the appropriate parameter of slowness may not be obvious on 
inspection. It may then be necessary to introduce ~ artificially, and sub- 
sequently restore it to unity after the expansion has been carried out. In 
such cases it is essential that ~ be introduced directly into the microscopic 
dynamics. It will then find its way into Eq. (23) via the microscopic 
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expressions for v, K, and L, and the required self-consistency will be 
automatic. 

Occasionally one may encounter a problem with more than one 
parameter of slowness, and the present procedure will then need to be 
generalized. However, the restriction to a single parameter of slowness 
seems to be adequate in most cases. It should be noted that this restriction 
does not imply that there is only one slow time scale in the problem. The 
macroscopic evolution of a(t) can still occur on several slow time scales ~t, 
~2t, etc. For example, in linearized hydrodynamics ~ may be identified with 
the wavenumber k, and the ideal (Euler) and irreversible (viscous) terms 
evolve on the time scales kt  and kZt, respectively. 

We therefore proceed to develop a systematic Chapman-Enskog 
expansion of/ l( t)  in powers of 3, based on Eq. (23) and the assumption 
that A ~ ~ for small ~. In any particular application, the parameter ~ must 
be chosen so that this assumption is satisfied. (Notice that according to this 
assumption, our ~ corresponds to the square root of Zwanzig's ~.!12)) 
During the expansion the a(t) are still to be regarded as having their 
correct values, as given by Eq. (2). Thus, they are formally regarded as 
quantities of order unity and are not expanded in ~.(51 Their ther- 
modynamic conjugates ~/(a) are treated in the same way. 

The leading dependence of the quantities v, K, and k upon ~ may be 
inferred from the number of factors of A that each contains. It follows that 
v ~ 3, K ~ 32, and k ~ ~ for small 3. Inspection of Eq. (23) then shows that 
~i(t) vanishes as ~--, 0, as expected, so its expansion in ~ begins with the 
linear term. We therefore write 

~l(/) = ~ a l ( t )  q- ~ 2 a 2 ( t  ) q- - . -  (28) 

Substituting Eq. (28) into Eq. (23) and collecting coefficients, 
order 32 

where 

we obtain to 

/12(t)=v2(a(t))-  dr lim [-~-2</i.(/)zlA(~c))~] "7(a(r)) (30) 
~ 0  

A A(X) = A ( X ) -  6A(X)- i ( a ) .  <6AA> (31) 

v2(a) is the coefficient of 32 in the expansion of v(a), and use has been 
made of Eqs. (11), (26), and (27). Notice the automatic appearance of the 
"subtracted flux. ''~s) 

~il(t )=  lim [3 'v(a(t))] (29) 
~ 0  
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Since v(a) is reversible in nature, the macroscopic equations of motion 
to order 4 are both strictly local in time and purely reversible. It is 
therefore necessary to carry the expansion to order ~2 in order to obtain 
the lowest nonvanishing contributions of both reversible and irreversible 
character. The quantity v2 in Eq. (30) represents a reversible contribution 
of order 42 to a(t). This contribution, however, should ordinarily be 
negligible compared to the reversible contribution of order 3, and it will 
therefore be neglected in what follows. 

The reduction to time-local behavior in the irreversible term of order 
42 is accomplished simply by assuming that the correlation function in 
Eq. (30) decays essentially to zero if z differs from t by more than some 
microscopic correlation time. This is a nontrivial assumption whose 
justification from first principles would require a detailed microscopic 
analysis of the correlation function. It will not always be satisfied, as coun- 
terexamples are known; e.g., the breakdown of hydrodynamics in two 
dimensions. However, the assumed behavior would seem to be necessary 
for the existence of a time-local macroscopic description of irreversibility. 
Experimental verification that such a description exists for a particular set 
of variables a therefore constitutes an empirical justification for the 
assumption. 

The above assumption, together with the fact that a(t) is slowly 
varying, implies that the factor ~(a(r)) in Eq. (30) can be evaluated at r = t 
and taken outside the integral, and that all other a(r)'s implicit in the 
correlation function can be replaced by a(t) with negligible effect. 
Moreover, the lower integration limit can be extended to negative infinity. 
When all this is done and the integration variable is changed from ~ to s = 
t - ~ ,  Eq. (30) becomes 

~i2(t) = - r(a(t)) �9 y(a(t)) (32) 

where 

r ( a ) =  ds lira {~-2<[eL'A(X)] z/A(X)>} (33) 
r  

and v2 has been neglected as promised. Alternatively, r may be written in 
the more compact notation as 

r ( a ( t ) )=  ds lim [~ -2<A( t+s )A-~( t ) ) t ]  (34) 
~ 0  

The time-local nonlinear transport equations to order ~ are obtained 
by combining Eqs. (28), (29), and (32). The result is 

~i(t) = 4 lim [4  l v ( a ( t ) ) ]  - ~ . 2 [ ( a ( t ) ) ' ? ( a ( t ) )  (35)  
4 ~ 0  
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where the nonlinear transport coefficient matrix is given by Eq. (33). 
Equations (33) and (35) constitute our main result. They represent an 
important generalization of the more familiar linear transport theories, and 
yet are no more difficult to derive. These equations are valid far from 
equilibrium, and the transport coefficients accordingly manifest a nonlinear 
dependence upon the macroscopic state of the system. 

We note that Eq. (33) has the same formal structure as the familiar 
time-correlation-function expressions for linear transport coefficients near 
equilibrium./~2) Here, however, the statistical average is weighted by 
p0(X; a) instead of the equilibrium distribution, and the quantity AA is 
defined with reference to state a instead of the equilibrium state. It is just 
these differences in weighting and AA that make the transport coefficients 
state-dependent. This is a pleasingly intuitive result, which one might have 
expected to be a useful approximation, but which is actually exact in the 
time-local description to order 42 . 

The time correlation function in Eq. (33) contains a "subtracted 
flux ''(8) in the second factor only. If desired, however, a similar subtraction 
can be introduced into the first factor as well. One readily verifies that this 
correlation function is unchanged if eL'A(X) is replaced by eL~'A(X) - 
6A(X) �9 M(a)- (6AG),  where G(X) is arbitrary. The natural choice for G is 
eLSA. 

The transport coefficient matrix F(a) is not in general symmetric. 
However, it may be resolved into symmetric and antisymmetric parts in the 
usual way. All irreversible effects reside in the symmetric part, because the 
antisymmetric part does not contribute to the production of entropy. This 
is easily seen by combining Eqs. (14) and (35) to obtain 

S(a) =k~27(a )  �9 r(a) .v(a)  (36) 

where use has been made of Eq. (10). The antisymmetric part of r(a) 
clearly drops out of S(a), and it therefore represents a reversible con- 
tribution of order 42 to ~i(t). But this contribution, like that of v2, should 
ordinarily be negligible compared to the reversible terms of order 4. To 
neglect it, one simply replaces r(a) in Eq. (35) by �89 + I'r(a)], where 
superscript T denotes the transpose. In this approximation the matrix of 
transport coefficients becomes symmetric; one then has Onsager reciprocal 
relations far from equilibrium (cf. Hurley and Garrod, ~16J Garcia-Colin and 
del Rio-Correa, (17) and Nettleton 1 is I). 

The time-local transport equations contain quantities that involve 
limits as ~ ~0 .  It should be noted that in some problems, the physical 
significance of { may require that the volume of the system be sent to 
infinity before 4 is sent to zero. 
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No attempt will be made here to carry the expansion beyond order 42 , 
although this can in principle be done. However, higher order terms in 4 
are less likely to exhibit the behavior necessary for the transport equations 
to reduce to a time-local form. The physical reason for this is that the 
separation of time scales becomes less and less complete as 4 is increased, 
until eventually a point is reached at which the true nonlocal time behavior 
can no longer be consistently approximated by time-local equations. In 
hydrodynamics, for example, the divergence of the Burnett coefficients (4'9~ 
indicates that a time-local description in terms of the conventional 
hydrodynamic variables breaks down at order 4 3 , and as already noted, it 
breaks down at order 4 2 in two dimensions. Attempts to push the expan- 
sion beyond second order are therefore hazardous and should be pursued 
with extreme caution. When time-local behavior does break down, it may 
be possible to restore it by including additional variables in the set a. 
Unfortunately, it is rarely obvious what the additional variables should be. 

5. L INEARIZATION A B O U T  E Q U I L I B R I U M  

Here we wish to derive the linearized transport equations to which the 
nonlinear equations of the previous section reduce when the system is suf- 
ficiently close to equilibrium. 

In order for the general formalism to include equilibrium as a special 
case, the Hamiltonian H(X) must be a linear combination of the variables 
A(X). (sl That is, 

H(X) = h.  A(X) (37) 

where h is the constant vector whose components are the coefficients in the 
linear combination. 

The equilibrium values of the variables a, denoted by aeq , are deter- 
mined by the condition 

~(aeq) = - ~ h  (38) 

where fl = 1/kB T and T is the equilibrium temperature. It then follows from 
Eqs. (4) and (5) that po(X; aeq) =peq(X),  where 

exp[ - /~H(X)]  (39) 
Peq(X) = ~ dX exp[ - f lH( X) ]  

is the usual canonical equilibrium distribution. The equivalence of Eq. (38) 
to the explicit formula aeq =~ dX IOeq(X)A(X) follows from Eq. (6). 
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Since H(X) is a constant of the motion, / : /= h. A = 0. Equation (38) 
then implies the useful relation 

~k(X) �9 ~t(aeq ) = 0 ( 4 0 )  

We are now in a position to linearize Eq. (35). This is done by letting 
a(t) = aeq + 6a(t), expanding in powers of 6a, and discarding terms of order 
(6a) 2 and higher. When this is done, all terms involving 7(a~q) drop out 
because of Eq. (40), and we are left with 

6/l(t)= - [ 4  lira (4 I<6AA>oq)+ ~21"(a~q)] " M(a~q).6a(t) (41) 
{ ~ 0  

where use has been made of Eqs. (11) and (21), and the subscript "eq" 
implies evaluation at a = aeq, These are indeed just the usual equations of 
linear transport theory (12) (appropriately generalized to the case of nonzero 
(6AA >oq). The transport coefficients therein are now evaluated at a = aoq. 
The average in Eq. (33) thus becomes an equilibrium average, whereupon 
Eq. (33) reduces to the usual expression for the linear transport coefficients 
in terms of equilibrium time correlation functions/12~ (again for nonzero 
< ~AA > eq ). 

6. N O N L I N E A R  FRICTION COEFFIC IENT OF A 
H E A V Y  PARTICLE 

As an illustrative application of the preceding general formalism, we 
analyze the nonlinear momentum relaxation of a heavy particle of mass M 
immersed in a bath of N light particles of mass m. The microscopic state X 
consists of the positions r N and momenta p~v of the light particles, together 
with the position R and momentum P of the heavy particle. The set of 
macroscopic variables is taken to be A = (U, H), where U = P/M is the 
velocity of the heavy particle and 

H = I Pl 2/2M + ~/P,I  2/2m + e(r  N, l~) (42) 
i 

is the Hamiltonian of the entire system. Here ti0(r N, R) is the total potential 
energy, including interactions between the heavy and light particles. The set 
of time derivative variables is simply A = M - ' ( F ,  0), where F = F(r N, R ) =  
- (~ /0R)  ~(r  N, N) is the total force exerted by the light particles on the 
heavy particle. The smallness parameter is taken to be ~ = M '. The con- 
strained equilibrium distribution is given by 

Po= Q-1 e x p ( - f i H + a . U )  (43) 
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where 

Q = f dr N dRdp ~'v dP e x p ( -  f i l l +  a" U) (44) 

and the Lagrange multipliers ~ and fi are functions of the mean heavy-par- 
ticle velocity u =  ( U )  = j ' d X p U  and the mean total energy E =  ( H ) =  

dX pH. The set of mean macroscopic variables is just a = (u, E), and their 
thermodynamic conjugates are y = (m -f i ) .  

The momentum integrations in Q can be carried out explicitly, with 
the result 

where 

Q : (2=m/fi)3~e/2(2=M/fi) 3/2 exp( [a[ 2/2tiM) Z(fl) 

Z(fl) =] dr ~ dR expE -flqS(r N, R)] 

(45) 

(46) 

is the configurational partition function for the system. The functional 
dependence o f~  and fl on u and E is determined by Eq. (7), from which we 
obtain the relations 

el = fiMu (47) 

fi= f I (E- �89  I.12) (48) 

where the function f is defined by f ( f l )=3(N+ l)/2fl-O[lnZ(fl)J/Ofl. 
Notice that f(fl) is just the equilibrium energy of the system at a tem- 
perature of l/kufi. It follows that l/kufl is the temperature that the system 
would have at equilibrium if its energy were E -  �89 eul 2. 

The streaming velocity is v = M - I ( ( F ) ,  0), and clearly 

( F ) = Z  1 f dr'V dR e x p [ -  fiqS(rN, R)] F(r'V, R) = 0 (49) 

The streaming velocity therefore vanishes in this problem. One readily 
verifies that the matrix ( a A A )  also vanishes in a similar manner, so that 
JA = A. The matrix of transport coefficients therefore becomes 

g I 0 )  
1-= I f 

0 p 0 

where 0 is the zero vector and g is a dyadic given by 

(50) 

O= ds lim ((eL~F)F) 
M ~ o o  

(51) 
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The transport equations (35) now become 

/! = -(/~/M)g �9 u (52) 

/?=0 (53) 

the latter of which simply expresses the conservation of total energy 
(/:/--0). The velocity-dependent friction coefficient is the tensor fig, which 
depends on u through both fl and g. The dependence of g on u is due to 
the fact that the correlation function in Eq. (51) is to be evaluated by 
averaging over the constrained equilibrium distribution of Eq. (43). The 
combination of Eqs. (48), (51), and (52) generalizes the familiar expression 
for the linear friction coefficient (~2) to the nonlinear regime. 

Although the nonlinear friction coefficient is a tensor, it may be 
replaced by an equivalent scalar coefficient that depends on u only through 
luj. The symmetry of the problem implies that fi must be collinear with u, 
so that fi = (ft. fi)fi, where fi --- u/lul. Equation (52) may therefore be rewrit- 
ten as 

il = - ( f l / M ) ( f i  " g" fi)u 

which shows that the effective scalar friction coefficient is simply 

(54) 

f i ( f i - g ' f i ) = f l  ds lim ((eC~F.f i )F.f i )  (55) 
M~ov 
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